268 research outputs found

    Introduction to the special issue on halogen bonding

    Get PDF

    2-(2,3,5,6-Tetra­fluoro-4-iodo­anilino)­ethanol

    Get PDF
    The reaction of 2-amino­ethanol and iodo­penta­fluoro­benzene in the presence of K2CO3 gave the title compound, C8H6F4INO, in high yield. The structure is characterized by double layers of mol­ecules linked by O—H⋯O and N—H⋯O hydrogen bonds, and linear C—I⋯F [I⋯F = 3.049 (2) Å] and bent C—I⋯I [I⋯I = 3.9388 (7) Å] inter­actions between pairs of nearly parallel iodo­tetra­fluoro­phenyl groups. No O⋯I or N⋯I halogen bonding is found

    Nanostructure and stability of calcitonin amyloids

    Get PDF
    Calcitonin is a 32-amino acid thyroid hormone that can form amyloid fibrils. The structural basis of the fibril formation and stabilization is still debated and poorly understood. The reason is that NMR data strongly suggest antiparallel β-sheet calcitonin assembly, whereas modeling studies on the short DFNKF peptide (corresponding to the sequence from Asp15 to Phe19 of human calcitonin and reported as the minimal amyloidogenic module) show that it assembles with parallel β-sheets. In this work, we first predict the structure of human calcitonin through two complementary molecular dynamics (MD) methods, finding that human calcitonin forms an α-helix. We use extensive MD simulations to compare previously proposed calcitonin fibril structures. We find that two conformations, the parallel arrangement and one of the possible antiparallel structures (with Asp15 and Phe19 aligned), are highly stable and ordered. Nonetheless, fibrils with parallel molecules show bulky loops formed by residues 1 to 7 located on the same side, which could limit or prevent the formation of larger amyloids. We investigate fibrils formed by the DFNKF peptide by simulating different arrangements of this amyloidogenic core sequence. We show that DFNKF fibrils are highly stable when assembled in parallel β-sheets, whereas they quickly unfold in antiparallel conformation. Our results indicate that the DFNKF peptide represents only partially the full-length calcitonin behavior. Contrary to the full-length polypeptide, in fact, the DFNKF sequence is not stable in antiparallel conformation, suggesting that the residue flanking the amyloidogenic peptide contributes to the stabilization of the experimentally observed antiparallel β-sheet packing

    Halogen and hydrogen bonding in multicomponent crystals of tetrabromo-1H-benzotriazole

    Get PDF
    4,5,6,7-Tetrabromo-1H-benzotriazole (TBBT) is still considered a reference inhibitor of casein kinase II (CK2), a valuable target for anticancer therapy, even though the poor solubility in water of this active pharmaceutical ingredient (API) has prevented its implementation in therapy. We decided to explore the interactions preferentially formed by TBBT in crystalline solids in order to obtain information helpful for the development of new TBBT cocrystals possibly endowed with improved bioavailability. In this paper, we describe the synthesis and the structural characterization of the TBBT methanol solvate and of the TBBT salt with N,N,Nâ\u80²,Nâ\u80²-tetramethylethylenediamine. It is shown that TBBT can give rise to several competing interactions. This API is clearly a good halogen bond (XB) donor, with bromine atoms adjacent to the triazole ring possibly better donors than the two others. TBBT is also a good hydrogen bond (HB) donor, with the triazole hydrogen forming an HB with the acceptor or being transferred to it. Interestingly, one of the triazole nitrogens was proven to be able to work as a hydrogen bond acceptor

    Hydrophobin-stabilized dispersions of PVDF nanoparticles in water

    Get PDF
    In this study, aqueous dispersions of partially crystalline PVDF nanoparticles (NPs) were obtained employing hydrophobin (HFB), an amphiphilic film-forming protein able to film hydrophobic surfaces. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) analysis of PVDF-HFBII aqueous dispersions confirmed the HPBII ability to film PVDF hydrophobic NPs. Freeze-dried PVDF-HFBII bio-nanocomposites were shown to be effectively re-dispersible in water. An aqueous dispersion of PVDF NPs may have an impact on the applications of this polymer in the perspective of the development of environmentally friendly coating methods

    From molecules to materials : Engineering new ionic liquid crystals through halogen bonding

    Get PDF
    Herein, we demonstrate that a bottom-up approach, based on halogen bonding (XB), can be successfully applied for the design of a new type of ionic liquid crystals (ILCs). Taking advantages of the high specificity of XB for haloperfluorocarbons and the ability of anions to act as XB-acceptors, we obtained supramolecular complexes based on 1-alkyl-3-methylimidazolium iodides and iodoperfluorocarbons, overcoming the well-known immiscibility between hydrocarbons (HCs) and perfluorocarbons (PFCs). The high directionality of the XB combined with the fluorophobic effect, allowed us to obtain enantiotropic liquid crystals where a rigid, non-aromatic, XB supramolecular anion acts as mesogenic core. X-ray structure analysis of the complex between 1-ethyl-3-methylimidazolium iodide and iodoperfluorooctane showed the presence of a layered structure, which is a manifestation of the well-known tendency to segregation of perfluoroalkyl chains. This is consistent with the observation of smectic mesophases. Moreover, all the reported complexes melt below 100 °C, and most are mesomorphic even at room temperature, despite that the starting materials were non-mesomorphic in nature. The supramolecular strategy reported here provides new design principles for mesogen design allowing a totally new class of functional materials

    Microfluidic behaviour of perfluoropolyether fluids in poly(dimethylsiloxane) micro-channels

    Get PDF
    Two different perfluoropolyether-based fluids, namely the unfunctionalized GALDEN SV90® and the dihydroxy derivative FOMBLIN Z-DOL® 2000 were employed as liquid samples in a poly(dimethylsiloxane) (PDMS) microfluidic setup, fabricated by soft-lithography techniques. The results of our investigation were compared with the behaviour of the low viscosity and high-fragility polyurethane structural adhesive (NOA72®), that is well known as an excellent material for the fabrication of sub-micrometer structures by soft-lithography techniques, and whose structural elastic properties inside restricted geometric systems have been recently investigated

    Systematic Study of Podand Molecules for Synergistic Halogen and Hydrogen Bond-Driven Anion Recognition in the Solid State

    Get PDF
    The increasing demand of species for the efficient capture and sensing of anions benefits from a systematic study of anion binding capabilities in the solid state. This work reports a detailed crystallographic study of ten structurally related podands and shows that these charged receptors bind anions with a combination of charge-assisted halogen and hydrogen bonds. Computational tools helped in highlighting the role of the different involved interaction and afforded possible design principles for the design of improved podands

    C–halogen…O supramolecular synthons:in situcryocrystallisation of 1,2-dihalotetrafluoroethane/HMPA adducts

    Get PDF
    The in situ cryocrystallisation technique has been used to obtain four adducts between hexamethylphosphortriamide and 1,2-dihalotetrafluoroethanes having iodine, bromine and chlorine as halogen-bonding donor atoms. These systems allowed for a precise comparison of different C-X···O synthons. The effectiveness and reliability of the pharmacologically important C-Cl···O synthons are proven. © 2013 Copyright Taylor and Francis Group, LLC

    Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study

    Get PDF
    In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer–azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer–azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation using two halogen-bond-donating azobenzene derivatives, one functionalized with a tetrafluoroiodophenyl and the other with an iodoethynylphenyl group. Both have been previously identified as efficient molecules in driving the SRG formation. We cover a broad concentration range, starting from 10 mol % azobenzene content and going all the way up to equimolar degree of complexation. The complexes are studied as spin-coated thin films, and analyzed by optical microscopy, atomic force microscopy, and optical diffraction arising during the SRG formation. We obtained diffraction efficiencies as high as 35%, and modulation depths close to 400 nm, which are significantly higher than the values previously reported for halogen-bonded polymer–azobenzene complexes
    corecore